Bronchial Asthma Pathophysiology and management

Dr Deepak Aggarwal
MD, FCCP
Asst. Professor
Pulmonary medicine

What is Asthma.....Definition (GINA)

Asthma is

- A chronic inflammatory disorder of the airways in which many cells and cellular elements play a role.
- The chronic inflammation is associated with airway hyper-responsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness and coughing particularly at night or early morning.
- These episodes are usually associated with widespread, but variable airflow obstruction within the lung that is often reversible either spontaneously or with treatment

Causes/ Risk factors

GENETIC SUSCEPTIBILITY AND
GENE-ENVIRONMENT INTERACTIONS

ENVIRONMENTAL RISK FACTORS

Perinatal Factors

Indoor and Outdoor Allergens

Smoking and Environmental Tobacco

Smoke

Other Pollutants

Race/Ethnicity and Socioeconomic

Status

Obesity

Respiratory Illnesses

How Asthma develops.....

PATHOGENESIS

PATHOGENESIS

ASTHMA - PATHOPHYSIOLOGY

Genetic predisposition Intrinsic vulnerability Atopy/allergy Inflammation underlies disease processes

Phenotype varies by individual and over time

Clinical symptoms also vary by individual and over time

PATHOLOGY

Asthma: Pathological changes

Pathology and consequences

Difference and overlap

Wheezy

bronchitis 10%

COPD

Neutrophils

CD4+ T-lymphocytes

No airway

hyperresponsiveness

Less bronchodilator response

Limited steroid response

incompletely irreversible

Asthma

Eosinophils

CD8+ T-lymphocytes

Airway

hyperresponsiveness

Bronchodilator response

Steroid response

Completely reversible

Physiologic Differences

Asthma

Normal DLCO

Normal lung volume

Normal elastic recoil

COPD

Abnormal DLCO

Hyperinflation

Decreased elastic recoil

Disease Pathology	Asthma	COPD
Reversible airflow obstruction	+++	4
Airway inflammation	+++	++
Mucus hypersecretion	147 _{0.78} + 1 14	+++
Goblet cell metaplasia	+	++
Impaired mucus clearance	++	++
Epithelial damage	14	-

Alveolar destruction

Smooth muscle hypertrophy

Basement membrane thickening

Asthma-Classic presentation

- Intermittent episodic, acute/subacute onset
- Breathlessness/chest tightness usually with wheeze
- Cough nocturnal or early morning.
- Diurnal and seasonal variation
- History of atopy, family history
- Polyphonic wheeze, prolonged expiration
- However, the examination can be normal.

Differential diagnosis

Category	Examples
Diseases causing recurrent episodic dyspnea	Chronic obstructive pulmonary disease, coronary artery disease, congestive heart failure, pulmonary emboli, recurrent gastroesophageal reflux with aspiration, recurrent anaphylaxis, systemic mastocytosis, carcinoid syndrome
Common diseases causing cough	Rhinitis, sinusitis, otitis, bronchitis (chronic or postviral), bronchiectasis, cystic fibrosis, pneumonia, diffuse pulmonary fibrosis
Common diseases causing airflow obstruction	Chronic obstructive bronchitis and emphysema, bronchiolitis obliterans, cystic fibrosis, organic or functional laryngeal narrowing, extrinsic or intrinsic narrowing of trachea or major bronchus.

Key indicators for considering a diagnosis of asthma

- Typical history
- Intermittent symptoms (reversible)
- Association of symptoms to weather changes, dust, smoke, exercise, viral infection, animals with fur or feathers, house-dust mites, mold, pollen, strong emotional expression (laughing or crying hard), airborne chemicals or dust
- Diurnal variation
- Family history
- Presence of atopy, allergic rhinitis, skin allergies

Routine Investigations

- Hemogram including eosinophil count
- Blood gas analysis
- X-ray chest
- Serum electrolytes (Mg, Na, K)
- Spirometry
- Other test to rule out specific diseases

Spirometry

- Spirometry measurements (FEV₁, FVC, FEV₁/FVC) before and after bronchodialator helps determine whether there is airflow obstruction and whether it is reversible over the short term
- (12% in increase in FEV1 and absolute increase in 200ml after 200ug of salbutamol inhalation)

Spirometry

- Spirometry should be done
 - at the time of initial assessment
 - after treatment is initiated and symptoms and peak expiratory flow (PEF) have been stabilized
 - at least every 1 to 2 years to assess the maintenance of airway function

Goals of Asthma Therapy

- Prevent recurrent exacerbations and minimize the need for emergency department visits or hospitalizations
- Maintain (near-) "normal" pulmonary function
- Maintain normal activity levels (including exercise and other physical activity)
- Provide optimal pharmacotherapy with minimal or no adverse effects

GINA Levels of Asthma Control

Characteristic	Controlled	Partly controlled (Any present in any week)	Uncontrolled	
Daytime symptoms	None (2 or less / week)	More than twice / week		
Limitations of activities	None	Any	3 or more features of	
Nocturnal symptoms / awakening	None	Any	partly controlled asthma	
Need for rescue / "reliever" treatment	None (2 or less / week)	More than twice / week	present in any week	
Lung function (PEF or FEV ₁)	Normal	< 80% predicted or personal best (if known) on any day		
Exacerbation	None	One or more / year	1 in any week	

Levels of prevention

Asthma drug classification

CONTROLLERS		RELIEVERS
Anti-inflammatory action to prevent asthma attacks	Sustained bronchodilator action but weak or unproven anti-inflamatory effect	For quick relief of symptoms and use in acute attacks as PRN dosage only
Inhaled corticosteroids 1. Beclomethasone 2. Budesonide 3. Fluticasone 4. Ciclesonide	Long-acting beta-agonists 1. Salmeterol 2. Formoterol	Short-acting beta-agonists 1. Salbutamol 2. Fenoterol 3. Terbutaline
Leukotriene modifiers 1. Montelukast 2. Zafirlkast Oral corticosteroids 1. Prednisone 2. Prednisolone 3. Methylprednisone 4. Methylprednisolone	Sustained-release theophylline preparations	Anti-cholinergenics Ipratropium bromide

What are Controllers?

Control/treat chronic inflammation

Prevent future attacks

Long term control

Prevent airway remodeling

Anti-inflammatory action to prevent asthma attacks

Inhaled corticosteroids

- 1. Beclomethasone
- 2. Budesonide
- 3. Fluticasone
- 4. Ciclesonide

Leukotriene modifiers

- 1. Montelukast
- 2. Zafirlkast

Oral corticosteroids

- 1. Prednisone
- 2. Prednisolone
- 3. Methylprednisone
- 4. Methylprednisolone

Sustained bronchodilator action but weak or unproven anti-inflamatory effect

Long-acting beta-agonists

- 1. Salmeterol
- 2. Formoterol

Sustained-release theophylline preparations

What Are Relievers?

- Rescue medications to treat acute bronchospasm
- Quick relief of symptoms
- Used during acute attacks
- Action usually lasts 4-6 hrs

For quick relief of symptoms and use in acute attacks as PRN dosage only

Short-acting beta-agonists

- 1. Salbutamol
- 2. Fenoterol
- 3. Terbutaline

Anti-cholinergenics

Ipratropium bromide

Methods of Medication Delivery

- Metered-dose inhaler (MDI)
 - Spacer/holding chamber/face mask
- Dry-powder inhaler (DPI)
- Nebulizer
- Oral Medication
 - Tablets, Liquids
- Intravenous Medication
 - IV Corticosteroids, IV Aminophylline

CONTROLLERS Inhaled Corticosteroids

- Treatment of choice for long-term control of persistent asthma
- Benefits
 - Reduced airway inflammation through topical activity
 - Decreases airway hyper-responsiveness.
 - Improve lung function and quality of life
 - Reduce the frequency of exacerbations
 - Reduced use of quick-relief medicine

NEVER FOR RESCUE PURPOSES

CONTROLLERS Corticosteroids

- Inhaled
 - Beclomethasone
 - Fluticasone
 - Triamcinolone
 - Budesonide
 - Flunisolide

Anti-inflammatory Effect of Glucocorticoid

Estimated Comparative Daily Dosages for Adults of Inhaled Corticosteroids

Drug	Low Dose Step 2	Medium Dose Step 3	High Dose Step 4
Beclomethasone	1-3 puffs	3-6 puffs	>6 puffs
	80 - 240 mcg	240 - 480 mcg	> 480 mcg
Budesonide DPI	1-3 puffs	3-6 puffs	> 6 puffs
	200 – 600 mcg	600 – 1,200 mcg	> 600 mcg
Flunisolide	2-4 puffs	4-8 puffs	> 8 puffs
	500–1,000 mcg	1,000–2,000 mcg	> 2,000 mcg
Fluticasone	2-6 puffs (44)	2-6 puffs (110)	> 6 puffs (110)
	88-264 mcg	264-660 mcg	> 660 mcg
Triamcinolone	4-10 puffs	10-20 puffs	> 20 puff
	400-1,000 mcg	1,000–2,000 mcg	> 2,000 mcg

Corticosteroid Side Effects

Inhaled Local

- Dysphonia
- Cough/throat irritation
- Thrush
- Impaired growth (high dose)?

Systemic (oral, IV)

- Fluid retention
- Muscle weakness
- Ulcers
- Malaise
- Impaired wound healing
- Nausea/Vomiting, HA
- Osteoporosis (adults)
- Cataracts (adults)
- Glaucoma (adults)

CONTROLLERS Long-acting Beta₂-agonists

- Salmeterol, Formoterol
 - Indication: Daily long-term control

- Advantages
 - Blunt exercise induced symptoms for longer time
 - Decrease nocturnal symptoms
 - Improve quality of life
- Combination therapy beneficial when added to inhaled corticosteroids

CONTROLLERS Long-acting Beta₂-agonists

- NOT for acute symptoms or exacerbations
 - Onset of effect → 30 minutes
 - Peak effect → 1-2 hours
 - Duration of effect → up to 12 hours
- NOT a substitute for anti-inflammatory therapy
- NOT appropriate for monotherapy

Useful Beta Adrenergic Effects

- Relax bronchial smooth muscle
- Inhibit mediator release from mast cells, eosinophils, macrophages
- Decrease mucous secretion (submucosal gl)
- Increase mucociliary transport
- Inhibit bronchial oedema
- Inhibit cholinergic transmisssion
- Decrease airway hyperresponsiveness

CONTROLLERS Leukotriene Modifiers

- Cysteinyl Leukotriene Receptor Antagonists
 - Montelukast Once a day dose
 - Zafirlukast Twice daily Empty Stomach

- 5-Lipoxygenase inhibitors
 - Zileuton Four times daily
 - Many drug interactions

Add-on Controllers Leukotriene Modifiers

Montelukast

- Improves lung function and asthma control
- May protect against exercise induced bronchoconstriction
- Not as effective as inhaled corticosteroids
- No food restrictions

RELIEVERS Short-Acting Beta₂-agonist

- Salbutamol
- Terbutaline
- levosalbutamol

RELIEVERS Short-Acting Beta₂-Agonists

- Most effective medication for relief of acute bronchospasm
- Increased need for these medications indicates uncontrolled asthma (and inflammation)
- Use "as needed" as regular use
 - May lower effectiveness
 - May increase airway hyperresponsiveness

RELIEVERS Short-Acting Beta₂-Agonists

Side Effects:

- Increased Heart Rate
- Palpitations
- Nervousness
- Sleeplessness
- Headache
- Tremor

Unwanted Beta Adrenergic Effects

- Hypokalemia (K shift into muscle tissue)
- Hyperglycemia (glycogenolysis)
- Hypoxia (pulmonary vasodilation causing increased ventilation/perfusion mismatch)

Oral Steroid Short Course

- Prednisone 30-40mg x 10-14 days for acute exacerbation of Asthma
- no weaning of dose unless long term use

Step 1 Treatment for Adults and Children > 5: Mild Intermittent

Controller - Daily

- Not needed

Reliever - Quick Relief

- -Short-acting inhaled beta₂-agonist
- Increasing use, or use more than 2x/week, may indicate need for long-term-control therapy

_

Step 2 Treatment for Adults and Children > 5: Mild Persistent

Controller – Preferred Daily

- Low dose inhaled corticosteroid

Alternatives

- leukotriene modifier,

OR

- Sustained-release theophylline

Step 3 Treatment for Adults and Children > 5: Moderate Persistent

Controller - Preferred Daily

 Low to medium dose inhaled corticosteroid (medium dose) and long-acting beta₂-agonist

Alternatives

 Increase inhaled corticosteroids to mediumdose range

OR

 Low to medium dose inhaled corticosteroid (medium dose) and either leukotriene modifier or theophylline

Step 3 Treatment for Adults and Children > 5: Moderate Persistent

(patients with recurring severe exacerbations)

STEP 4

Controller

Medium dose inhaled corticosteroid
 (medium dose) and long-acting beta₂-agonist

Alternatives

- Medium dose inhaled corticosteroid (medium dose) and either leukotriene modifier or theophylline
 - High dose inhaled corticosteroid

- Consider referral to a specialist

Step 4 Treatment for Adults and Children > 5: Severe Persistent

Controller - Daily

- High-dose inhaled corticosteroid AND
- Long-acting inhaled beta₂-agonist
 AND, if needed,
- -Add leukotriene antagonists & theophylline
- Corticosteroid tablets

Intermittent asthma

Persistent asthma: Daily medication Consult with asthma specialist if step 4 care or higher is required. Consider consultation at step 3.

Step 4

Step 3 Preferred: Step 2 Low-dose ICS + LABA Preferred: OR Step 1 Low-dose ICS Medium-dose Preferred: ICS Alternative: SABA PRN Alternative: Cromolyn, LTRA. Low-dose ICS Nedocromil, or

Preferred: Medium-dose ICS + LABA Alternative: Medium-dose ICS + either LTRA. Theophylline, or Zileuton

High-dose ICS + LABA AND Consider Omalizumab for patients who have allergies

Step 5

Preferred:

Step 6 Step up if needed Preferred: (first, check High-dose adherence. ICS + LABA + environmental oral control, and corticosteroid comorbid conditions) AND Consider Assess Omalizumab control for patients who have Step down allergies if possible

(and asthma is well controlled at least

3 months)

Each step: Patient education, environmental control, and management of comorbidities.

+ either LTRA.

Theophylline.

or Zileuton

Steps 2-4: Consider subcutaneous allergen immunotherapy for patients who have allergic asthma (see notes).

Quick-relief medication for all patients

Theophylline

- SABA as needed for symptoms. Intensity of treatment depends on severity of symptoms: up to 3 treatments at 20-minute intervals as needed. Short course of oral systemic corticosteroids may be needed.
- Use of SABA >2 days a week for symptom relief (not prevention of EIB) generally indicates inadequate control and the need to step up treatment.

Monitor Asthma Control

PARTLY CONTROLLED

- Daytime symptoms > twice/week
- Any limitation of activity
- Any nocturnal symptoms/awakening
- Need for reliever medication > twice/week
- Lung function <80% predicted or personal best
- <1 exacerbation per year

Check adherence and inhaler technique Step up treatment

Assess control

- Daytime symptoms
- Limitation of activities
- Nocturnal symptoms/awakening
- Need for reliever medication
- Lung function (PEF or FEV1)
- Exacerbations

UNCONTROLLED

- Three or more features of partly controlled asthma in any week.
- An exacerbation in any week

Check adherence and inhaler technique Step up treatment

CONTROLLED

- < 2 daytime symptoms per week
- No limitation of activity
- No nocturnal symptoms/awakening
- Reliever medication twice/week
- Normal lung function
- No exacerbations

Consider step down if controlled for 3 or more months

Treating to Maintain Asthma Control

Stepping down treatment when asthma is controlled

- When controlled on medium- to high-dose inhaled glucocorticosteroids: 50% dose reduction at 3 month intervals (Evidence B)
- When controlled on low-dose inhaled glucocorticosteroids: switch to once-daily dosing (Evidence A)

Treating to Maintain Asthma Control

Stepping up treatment in response to loss of control

- Rapid-onset, short-acting or long-acting inhaled β2-agonist bronchodilators provide temporary relief
- Need for repeated dosing over more than one/two days signals need for possible increase in controller therapy

Managing the well controlled patient

As soon as good control:

- Reduce oral steroids first, then stop
- Reduce relievers before controllers

When good control for 3+ months:

Reduce inhaled steroids

Therapy to avoid!

- Sedatives & hypnotics
- Cough syrups
- Anti-histamines
- Immunosuppressive drugs
- Immunotherapy
- Maintenance oral prednisone >10mg/day

Managing partly/uncontrolled asthma

- Check the inhaler technique
- Check adherence and understanding of medication
- Consider aggravation by:
 - Exposure to triggers/allergens at home or work
 - Co-morbid conditions: GI reflux, rhinitis/sinusitis, cardiac problem
 - Medications: Beta-blockers, NSAIDs, Aspirin

The Asthma Action Plan

- Helps patients/caregivers manage asthma
 - Uses Peak Flows
 - Spells out medication instructions
- Green Zone 80-100% Peak Flow
- Yellow Zone 50-80% Peak Flow
- Red Zone Below 50% Peak Flow

Medication Delivery Demonstrations

- Breath Actuated Inhalers
- Metered Dose Inhalers with Spacer/Holding Chamber
- Dry Powder Inhalers
- Nebulizers

pMDIs

Scretch

Advantages

Disadvantages

Small and portable difficu

difficult to learn technique

Unsuitable for children < 5-6

Quick to use

Unsuitable for the elderly,
Cold jet may irritate throat
Limited amount of drug
delivered per puff

Spacers and Holding Chambers

A spacer device enhances delivery by decreasing the velocity of the particles and reducing the number of large particles, allowing smaller particles of drug to be inhaled.

- A spacer device with a one-way valve, i.e., holding chamber, eliminates the need for the patient to coordinate actuation with inhalation and optimizes drug delivery.
- A simple spacer device without a valve requires coordination between inhalation and actuation.

DPIs

- Generally easier to use
- A minimal inspiratory flow rate is necessary to inhale from a DPI; difficult for some pts to use during an exacerbation
- More ecological than MDIs
- Storage may be difficult in humid climates

Nebulizer

Advantages

23

Disadvantages

No Coordination required

Cumbersome

Can be used for all ages
Effective in severe asthma

Expensive

Noisy

Treatment takes time

Which inhalation device for which patient?

 Infants and children up 5 y/o pMDI+spacer, nebulizer

• Children 5-9 y/o

pMDI+spacer, nebulizer, DPI

 Competent older children and adults pMDI, DPI

 Incompetent older children/adults pMDI+spacer, nebulizer

Key Messages

- Asthma is common and can start at any age
- Asthma can be effectively controlled
- Effective asthma management programs include education, objective measures of lung function, environmental control, and pharmacologic therapy.
- A stepwise approach to pharmacologic therapy is recommended.
- The aim is to accomplish the goals of therapy with the least possible medication.

