
Anemia

Erythrocyte Development

Overview

- Definition of anemia
- Etiology of anemia
- Classifications of anemia
- Investigative tools
- □ Sign & simptoms of anaemia
- Physical Examination of anemia
- Blood smear components

Definition of Anemia

- Deficiency in the oxygen-carrying capacity of the blood due to a diminished erythrocyte mass.
- May be due to:
 - □ Erythrocyte loss (bleeding)
 - □ Decreased Erythrocyte production
 - low erythropoietin
 - Decreased marrow response to erythropoietin
 - ☐ Increased Erythrocyte destruction (hemolysis)

Measurements of Anemia

- Hemoglobin = grams of hemoglobin per 100 mL of whole blood (g/dL)
- Hematocrit = percent of a sample of whole blood occupied by intact red blood cells
- RBC = millions of red blood cells per microL of whole blood
- MCV = Mean corpuscular volume
 - If > 100 → Macrocytic anemia
 - If 80 100 → Normocytic anemia
 - If < 80 → Microcytic anemia</p>
- RDW = Red blood cell distribution width
 - = (Standard deviation of red cell volume ÷ mean cell volume) × 100
 - Normal value is 11-15%
 - If elevated, suggests large variability in sizes of RBCs

Laboratory Definition of Anemia

- □ Hgb:
 - □ Women: <12.0
 - ☐ Men: < 13.5
- ☐ Hct:
 - □ Women: < 36</p>
 - ☐ Men: <41
 </p>

Criteria Anemia

WHO 1972 criteria include:

- 11 gr% infant age 6 month 6 years
- 12 gr% age 6 14 years
- 13 gr% Adult male
- 12 gr% Adult female non pregnance
- 11 gr% Adult female pregnance

Classification of Anemia

- Etiology
- Morphology
- Haemoglobin level

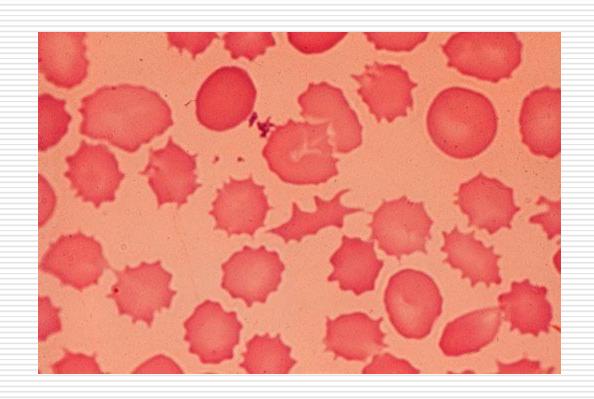
Causes of Anemia (kinetic approach)

Decreased erythrocyte production

- Decreased erythropoietin production
- Inadequate marrow response to erythropoietin
- Bone marrow failure

Erythrocyte loss

- Hemorrhage (Blood loss)
- Hemolysis (Increased destruction)

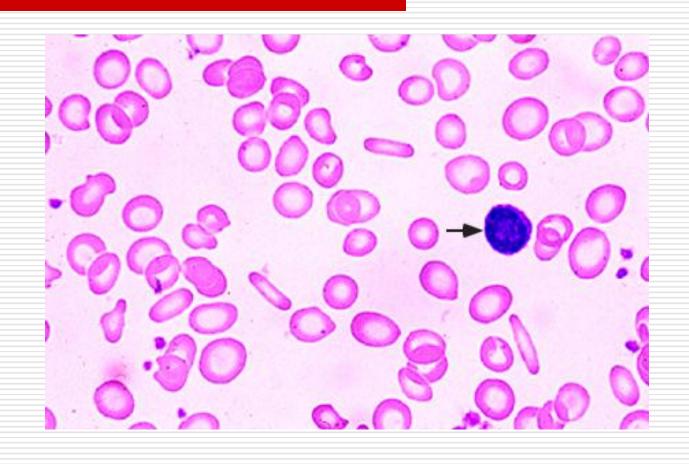

Causes of Anemia -Erythrocyte Loss

- Bleeding
 - Chronic (Colonic polyp/carcinonma)
 - □ Acute/Hemodynamically significant:
 - Gastrointestinal (hematemesis melena)
 - Tractus urogenital (menometrorrhagi)
 - Traumatic

Anemia due to Low Erythropoietin

- ☐ Kidney Disease
 - Normochromic, normocytic
 - Low reticulocyte count
 - Frequently, peripheral smear in uremic patients show "burr cells" or echinocytes
 - Target hemoglobin for patients on dialysis is 11 to 12 g/dL
 - Administer erythropoietin or darbopoietin weekly
 - Good Iron stores must be maintained

Echinocytes ("burr cells")


Anemia due to **Decreased Response to Erythropoietin**

- □ Iron-Deficiency
- Vitamin B12 Deficiency
- □ Folate Deficiency
- Anemia of Chronic Disease

Anemia due to **Decreased Response to Erythropoietin**

- □ Iron Deficiency
 - Can result from:
 - Pregnancy/lactation
 - Normal growth
 - Blood loss
 - Intravascular hemolysis
 - Gastric bypass
 - Malabsorption
 - Iron is absorbed in proximal small bowel; decreased abosrption in celiac disease, inflammatory bowel disease
 - May manifest as PICA
 - ☐ Tendency to eat ice, clay, starch, crunchy materials
 - May have pallor, koilonychia of the nails, beeturia
 - Peripheral smear shows microcytic, hypochromic red cells with marked anisopoikilocytosis.

Iron Deficiency Anemia

Iron Deficiency Anemia - koilonychia

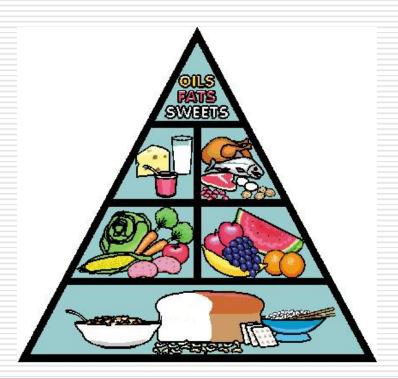
Decreased Production

- □ Infectious
- Neoplastic
- Endocrine
- Nutritional Deficiency
- Anemia of Chronic Disease

Decreased Production INFECTIOUS

- Bacterial
 - Tuberculosis
- □ Viral
 - HIV
 - Parvovirus

Decreased Production NEOPLASTIC


- Leukemia
- Lymphoma/Myeloma
- Myeloproliferative Syndromes
- Myelodysplasia

Decreased Production ENDOCRINE

- □ Thyroid Dysfunction
 - Hypothyroidism
- Erythropoietin Deficiency
 - Renal Failure

Decreased Production NUTRITIONAL DEFICIENCY

- □ Iron
- □ B12
- □ Folate

Anemia due to **Destruction of**Red Blood Cells

- Hemoglobinopathies
 - ☐ Sickle Cell Anemia
- Aplastic Anemia
 - Decrease in all lines of cells hemoglobin, hematocrit, WBC, platelets
 - □ Parvovirus B19, EBV, CMV
 - Acquired aplastic anemia
- Hemolytic Anemia

Hemolytic Anemias

anemia, renal insufficiency

Hereditary spherocytosis Autoimmune Hemolytic Anemia Warm-antibody mediated **Glucose-6-phosphate** dehydrogenase (G6PD) IgG antibody binds to erythrocyte surface **Deficiency** most common Most common enzyme defect in Diagnosed by POSITIVE Coomb's erythrocytes Test (detectgs IgG or complement on the cell surgace) X-linked Brisk hemolysis when patients Can be caused drugs exposed to oxidative stress from Treated with corticosteroids or drugs, infections or toxins. splenectomy if refractory **Thrombotic Thrombocytopenic Cold agglutinin Disease** Purpura (TTP) IgM antibodies bind to erythrocyte surface Thrombocytopenia and Does not respond to corticosteroids, microangiopathic hemolytic but usually mild. anemia, fever, renal insufficiency, neurologic **Infections** п symptoms Malaria Schistocytes on smear **Babesiosis Hemolytic Uremic Syndrome** Sepsis Thrombocytopenia, Trauma Microangiopathic hemolytic

Includes some snake, insect bites

Haemoglobin Level

- Mild : 8 10 gr%
- Moderate : 5 8 gr%
- Severe : < 5 gr%</p>

- Gravis Anemia is names of severe anemia
- Refracter anemia is recurent anemia

Morphology Anemia

- Micrositic Hipochromic
- Normocitic Normochromic
- Macrocitic

Erithrosyte Indeks

```
    MCV= Ht x 10 (Normal 80-97 fl)
        eri
    MCH = Hb x 10 (Normal 27-31 pg)
        eri
    MCHC= Hb x 100 (Normal 32-36 %)
        Ht
    MCV : Mikro/Makro
    MCH , MCHC : Hipo / Hiper
```

Using MCV to Characterize Anemia

- □ Hypochromic Microcytic
 - Iron deficiency anemia
 Hemoglobin E
 - Thalassemia
 - Sideroblastic anemia
 - Chronic infection
 - Lead poisoning

- Hemoglobin E trait
- Inborn errors of iron metabolism
- Copper deficiency
- Severe Malnutrition

Macrocytic Anemia

- ☐ MCV > 100
- Megaloblastic:Abnor malities in nucleic acid metabolism
 - B12, Folate
- Nonmegaloblastic:Abnor mal RBC maturation
 - Myelodysplasia
- Liver dz,hypothryroidism,chemotherapy/drugs

Microcytic Anemia

- □ MCV <80
- Reduced iron availability
- Reduced heme synthesis
- Reduced globin production

Approach to Diagnosis of Anemia

- detailed history
- careful physical examination
- peripheral blood smear
 - red cell morphology
 - MCV
 - RDW
 - WBC and platelet morphology

- bone marrow evaluation
- additional testing

History

- □ diet
- ☐ family history
- environmental exposures
- symptoms (headache, exertion dyspnea, fatigue, dizziness, weakness, mood or sleep disturbances, tinnitis)

Evaluation of the Patient

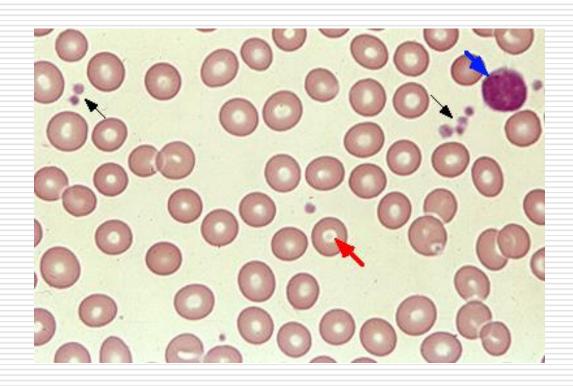
- ☐ HISTORY
 - Is the patient bleeding?
 - □ Actively? In past?
 - Is there evidence for increased RBC destruction?
 - Is the bone marrow suppressed?
 - Is the patient nutritionally deficient?
 Pica?

Symptoms of Anemia

- Decreased oxygenation
 - Exertional dyspnea
 - Dyspnea at rest
 - Fatigue
 - Bounding pulses
 - Lethargy, confusion
- Decreased volume
 - Fatigue
 - Muscle cramps
 - Postural dizziness
 - syncope


Physical Examination

- pallor
- jaundice
- tachycardia
- tachypnea
- orthostatic hypotension
- venous hum
- systolic ejection murmur


- peripheral edema
- Hepatosplenomegaly
- glossitis
- gingival pigmentation
- Petechiae
- Bony pain

Laboratory Evaluation

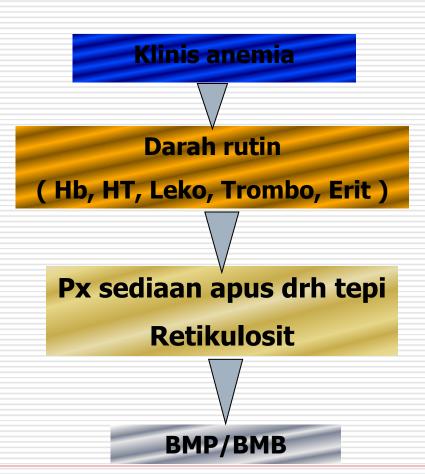
- Initial Testing
 - CBC w/ differential (includes RBC indices)
 - Reticulocyte count
 - Peripheral blood smear

Normal Peripheral Smear

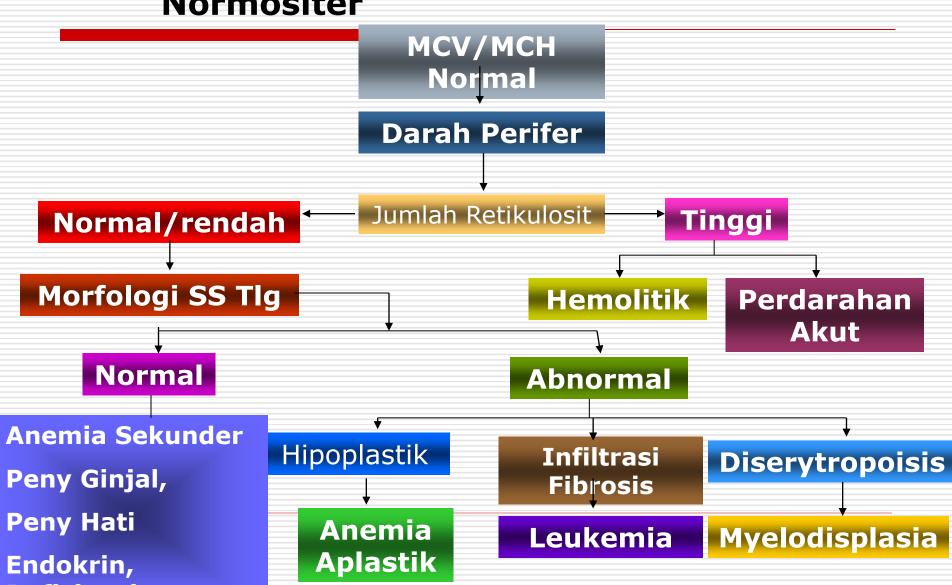
Peripheral Blood Components

- □ RBC
- □ Hgb
- ☐ HCT
- □ MCV a calculated value
- □ MCH
- RDW
- □ Reticulocyte Count

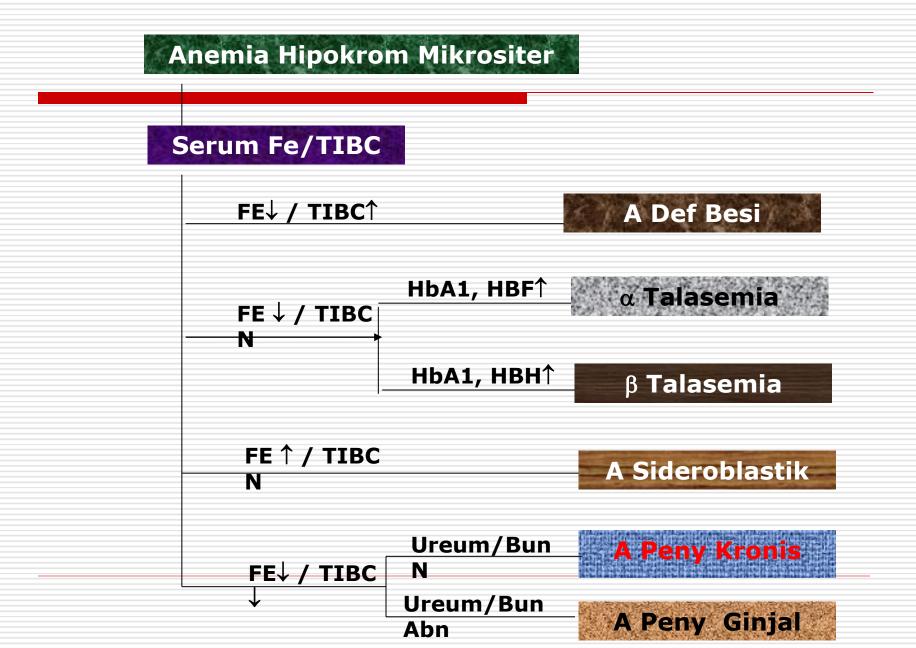
Laboratory Evaluation (2)

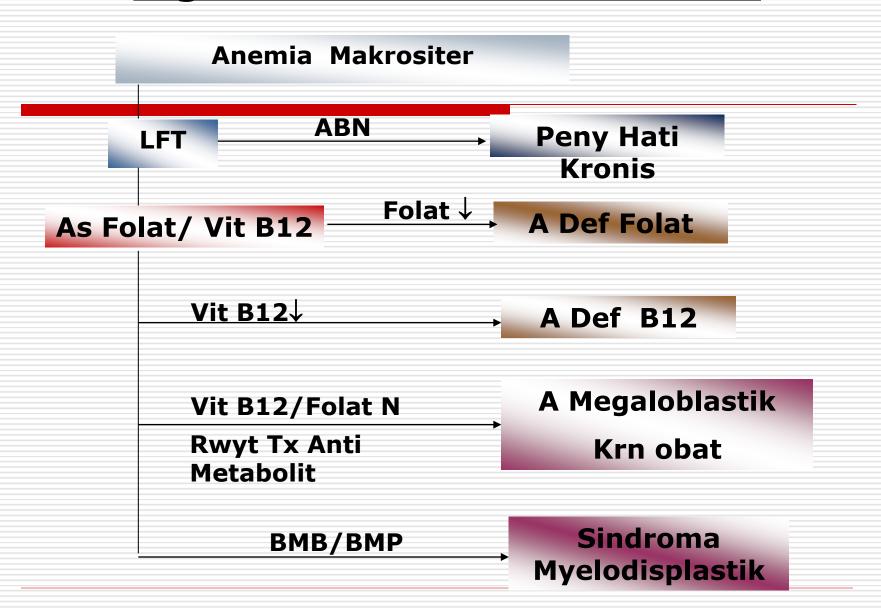

- Bleeding
 - Serial HCT or HGB
- Iron Deficiency
 - Iron Studies
- Hemolysis
 - Serum LDH, indirect bilirubin, haptoglobin, coombs, coagulation studies
- □ Bone Marrow Examination
- Others-directed by clinical indication
 - hemoglobin electrophoresis
 - B12/folate levels

Red Cell Morphology


- anisocytosis
- poikilocytosis
- elliptocytes
- Howell-Jolly bodies
- Cabot's rings
- Heinz bodies

- Sickled cells
- □ Spiculated/Crenul ated red cells
- □ Target cells
- Basophilic stippling


Diagnosis Anemia


Algoritma Anemia Normokrom Normositer

Algoritme anemia Hipokrom Mikrositer

Algoritma Anemia Makrositer

Thank You for Your Attention